Sains Malaysiana 54(3)(2025): 629-640
http://doi.org/10.17576/jsm-2025-5403-02
Growth and
Nutritional Quality in Giant Freshwater Prawn, Macrobrachium rosenbergii through Live Mealworm Feeding with
Probiotic Enrichment
(Pertumbuhan dan Kualiti Nutrisi dalam Udang Galah, Macrobrachium rosenbergii melalui Pemakanan Ulat Hidup dengan Pengayaan Probiotik)
SASHWINIE
MURALI1, CHAIW-YEE TEOH1,3,*, WEY-LIM WONG2,3
1Department of Agricultural and Food
Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti,
Bandar Barat, 31900 Kampar, Perak, Malaysia
2Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman,
Jalan Universiti, Bandar Barat, 31900 Kampar, Perak,
Malaysia
3Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti,
Bandar Barat, 31900 Kampar, Perak, Malaysia
Diserahkan: 24 Ogos 2024/Diterima: 26 November 2024
Abstract
To
address the gap in sustainable aquaculture, a 17-week feeding trial was
conducted to evaluate locally-sourced mealworms, with and without Bacillus
subtilis probiotic enrichment, as an alternative feed material for giant
freshwater prawn (Macrobrachium rosenbergii), assessing their effects on growth, feed
utilization, and nutritional composition. Five experimental diets were tested:
commercial prawn feed (CPF), CPF combined with live mealworm (CPF+MW), mealworm
alone (MW), probiotic-enriched mealworm (PMW), and CPF combined with
probiotic-enriched mealworm (CPF+PMW). Triplicate groups of 20 prawns were
randomly assigned to each diet. Weight gain among the groups ranged from
421.88% to 529.34%, with no significant differences observed (P >
0.05). Prawns fed CPF exhibited a significantly higher feed conversion ratio
(FCR) (3.72 ± 0.32, P < 0.05), indicating less efficient feed
utilization and leading to increased production costs. While CPF (45.01%) and
MW (52.44%) diets differed significantly in crude protein content, the prawns
fed CPF (59.24%) and MW (60.78%) showed similar crude protein levels. These
results suggest that live mealworms are a viable alternative to commercial feed
for GFP, maintaining growth performance and nutritional quality. Furthermore,
combining live mealworms with commercial feed proves to be an effective feeding
strategy, though enrichment with B. subtilis did not provide additional
benefits for prawn growth or FCR.
Keywords: Bacillus
subtilis; probiotic enrichment; sustainable feed; Tenebrio molitor
Abstrak
Untuk menangani jurang dalam akuakultur mampan, suatu kajian pemakanan selama 17 minggu telah dijalankan untuk menilai ulat tempatan dengan dan tanpa pengayaan probiotik Bacillus subtilis sebagai bahan makanan alternatif untuk udang galah (Macrobrachium rosenbergii), dengan menilai kesannya terhadap pertumbuhan, penggunaan makanan dan komposisi nutrisi. Lima diet uji kaji telah diuji: makanan udang komersial (CPF), CPF digabungkan dengan ulat hidup (CPF+MW), ulat sahaja (MW), ulat yang diperkaya dengan probiotik (PMW) dan CPF digabungkan dengan ulat yang diperkaya dengan probiotik (CPF+PMW). Tiga kumpulan udang sebagai peniga sebanyak 20 ekor secara rawak diberikan bagi setiap diet. Keputusan menunjukkan peningkatan berat dalam kalangan kumpulan berbeza antara 421.88% hingga 529.34%, tanpa perbezaan yang signifikan diperhatikan (P > 0.05). Udang yang diberi makan CPF menunjukkan nisbah penukaran makanan (FCR) yang lebih tinggi secara signifikan (3.72 ± 0.32, P < 0.05), menunjukkan penggunaan makanan yang kurang cekap dan menyebabkan peningkatan kos pengeluaran. Walaupun diet CPF
(45.01%) dan MW (52.44%) berbeza dengan ketara dalam kandungan protein kasar, tetapi udang yang diberi CPF (59.24%) dan MW (60.78%) menunjukkan tahap protein kasar yang serupa. Keputusan ini mencadangkan bahawa ulat hidup adalah alternatif yang sesuai untuk makanan komersial bagi GFP, mengekalkan prestasi pertumbuhan dan kualiti nutrisi. Selain itu, menggabungkan ulat hidup dengan makanan komersial terbukti sebagai strategi pemakanan yang berkesan, walaupun pengayaan B. subtilis tidak memberikan manfaat tambahan kepada pertumbuhan atau FCR udang.
Keywords: Bacillus
subtilis; pemakanan mampan; pengayaan probiotik; Tenebrio molitor
RUJUKAN
Ahmed, A., Lodhi, S. & Shukla, S. 2021.
Observations on feeding behaviour of freshwater prawn Macrobrachium lamarrei (Crustacea: Decapoda). International
Journal of Fisheries and Aquatic Studies 9(6): 109-112.
AOAC. 1997. Official Methods of Analysis
of AOAC International Vol. 1. 16th ed. Arlington, VA, USA: Association of
Official Analytical Chemists.
Barragán-Fonseca, K.Y., Greenberg, L.O., Gort, G., Dicke, M. & Van
Loon, J.J. 2023. Amending soil with insect exuviae improves herbivore
tolerance, pollinator attraction and seed yield of Brassica nigra plants. Agriculture, Ecosystems &
Environment 342: 108219.
Barroso, F.G., de Haro,
C., Sánchez-Muros, M.J., Venegas, E.,
Martínez-Sánchez, A. & Pérez-Bañón, C. 2014. The
potential of various insect species for use as food for fish. Aquaculture 422: 193-201.
Berezina, N. 2017. Mealworms, promising
beetles for the insect industry. In Insects as Food and Feed: From
Production to Consumption, edited by van Huis, A. & Tomberlin,
J.K. Wageningen, The Netherlands: Wageningen Academic Publishers. pp. 259-269.
https://doi.org/10.3920/978-90-8686-849-0
Besson, M., Aubin, J., Komen,
H., Poelman, M., Quillet,
E., Vandeputte, M., van Arendonk,
J.A.M. & de Boer, I.J.M. 2016. Environmental impacts of genetic improvement
of growth rate and feed conversion ratio in fish farming under rearing density
and nitrogen output limitations. Journal of Cleaner Production 116:
100-109.
Bordiean, A., Krzyżaniak,
M., Aljewicz, M. & Stolarski,
M.J. 2022. Influence of different diets on growth and nutritional composition of
yellow mealworm. Foods 11(19): 3075.
Bordiean, A., Krzyżaniak,
M., Stolarski, M.J., Czachorowski,
S. & Peni, D. 2020. Will yellow mealworm become a
source of safe proteins for Europe? Agriculture 10(6): 233.
Chakraborty, S.K. 2017. Ecological services
of intertidal benthic fauna and the sustenance of coastal wetlands along the
Midnapore (East) Coast, West Bengal, India. Coastal Wetlands: Alteration and
Remediation, edited by Finkl, C. & Makowski,
C. Springer, Cham. pp. 777-866.
Chavez, M. & Uchanski,
M. 2021. Insect left-over substrate as plant fertiliser. Journal of Insects
as Food and Feed 7(5): 683-694.
Chen, K., Li, E., Xu, Z., Li, T., Xu, C.,
Qin, J.G. & Chen, L. 2015. Comparative transcriptome analysis in the
hepatopancreas tissue of Pacific white shrimp Litopenaeus vannamei fed different lipid sources at low
salinity. PLoS One 10(12): e0144889.
Choi, I.H., Kim, J.M., Kim, N.J., Kim,
J.D., Park, C., Park, J.H. & Chung, T.H. 2018. Replacing fish meal by
mealworm (Tenebrio molitor) on the growth
performance and immunologic responses of white shrimp (Litopenaeus vannamei). Acta Scientiarum.
Animal Sciences 40: e35015.
https://doi.org/10.4025/actascianimsci.v40i1.39077
Chong, S.H.K., Teoh, C.Y. & Wong, W.L.
2022. Potential use of live mealworm as a sustainable feed to improve
productivity of the giant freshwater prawn, Macrobrachium rosenbergii. ASM Science Journal 17: 1-8.
https://doi.org/10.32802/asmscj.2022.1006
Chung, M.Y., Kwon, E.Y., Hwang, J.S., Goo,
T.W. & Yun, E.Y. 2013. Pre-treatment conditions on the powder of Tenebrio molitor for using as a novel food ingredient. Journal
of Sericultural and Entomological Science 51(1):
9-14.
Colombo, S.M., Roy, K., Mraz, J., Wan,
A.H., Davies, S.J., Tibbetts, S.M., Øverland, M.,
Francis, D.S., Rocker, M.M., Gasco, L. & Spencer,
E. 2023. Towards achieving circularity and sustainability in feeds for farmed
blue foods. Reviews in Aquaculture 15(3): 1115-1141.
Cruz, P.M., Ibanez, A.L., Hermosillo,
O.A.M. & Ramirez Saad, H.C. 2012. Use of probiotics in aquaculture. ISRN
Microbiology https://doi:10.5402/2012/916845
Dadvar, E., Shekarabi,
S.P.H., Khazaie, E., Ehsani,
J. & Mehrgan, M.S. 2023. Effect of mealworm (Tenebrio molitor) larvae enriched with a commercial
probiotic, protexin, on growth performance and skin color in Oscar (Astronotus ocellatus). Journal of Animal Environment 14(4): 181-186.
Danks, H.V. 2006. Short life cycles in insects
and mites. The Canadian Entomologist 138(4): 407-463.
Ding, Z., Xiong,
Y., Zheng, J., Zhou, D., Kong, Y., Qi, C., Liu, Y., Ye, J. & Limbu, S.M.
2022. Modulation of growth, antioxidant status, hepatopancreas morphology, and
carbohydrate metabolism mediated by alpha-lipoic acid in juvenile freshwater
prawns Macrobrachium nipponense under two dietary carbohydrate levels. Aquaculture 546: 737314.
Department of Fisheries (DOF). 2023. Annual
Fisheries Statistics – Volume 1.
https://www.dof.gov.my/en/resources/fisheries-statistics-i/ Accessed 19 July
2024.
Dreassi, E., Cito, A., Zanfini, A., Materozzi, L., Botta, M. & Francardi, V.
2017. Dietary fatty acids influence the growth and fatty acid composition of
the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). Lipids 52(3):
285-294.
El-Dakar, A.Y. & Goher,
T.M. 2004. Using of Bacillus subtilis in microparticulate diets for
producing biosecure of Penaeus japonicus postlarva. Agriculture Science Mansoura University 29: 6855-6873.
El-Saadony, M.T.,
Shehata, A.M., Alagawany, M., Abdel-Moneim, A.M.E., Selim, D.A., Abdo, M., Khafaga,
A.F., El-Tarabily, K.A., El-Shall, N.A. & Abd
El-Hack, M.E. 2022. A review of shrimp aquaculture and factors affecting the
gut microbiome. Aquaculture International 30(6): 2847-2869.
Finke, M.D. 2015. Complete nutrient content
of three species of wild caught insects, pallid-winged grasshopper, rhinoceros
beetles and white-lined sphinx moth. Journal of Insects as Food and Feed 1(4): 281-292.
Folch, J., Lees, M. & Sloane Stanley, G.H.
1957. A simple method for the isolation and purification of total lipids from
animal tissues. J. Boil. Chem. 226(1): 497-509.
Gałęcki, R., Zielonka,
Ł., Zasȩpa, M., Gołȩbiowska,
J. & Bakuła, T. 2021. Potential utilization
of edible insects as an alternative source of protein in animal diets in
Poland. Frontiers in Sustainable Food Systems 5: 675796.
Glencross, B.D., Smith, D.M. &
Williams, K.C. 1998. Effect of dietary phospholipids on digestion of neutral
lipid by the prawn Penaeus monodon. Journal of the World Aquaculture
Society 29(3): 365-369.
Glencross, B.D., Smith, D.M., Thomas, M.R.
& Williams, K.C. 2002. The effects of dietary lipid amount and fatty-acid
composition on the digestibility of lipids by the prawn, Penaeus monodon. Aquaculture 205(1-2): 157-169.
Grau, T., Vilcinskas,
A. & Joop, G. 2017. Sustainable farming of the
mealworm Tenebrio molitor for the production
of food and feed. Zeitschrift für Naturforschung C 72(9-10): 337-349.
Gullian, M., Thompson, F. & Rodriguez, J.
2004. Selection of probiotic bacteria and study of their immunostimulatory
effect in Penaeus vannamei. Aquaculture 233(1-4): 1-14.
Hai, N.V. 2015. The use of probiotics in
aquaculture. Journal of Applied microbiology 119(4): 917-935.
Hénault-Ethier, L. 2017. The role of the emerging ento(mo)technology sector to
treat urban and rural organic wastes in attaining the 2020 landfilling ban
policy of Québec, Canada. Webinar. Canadian Compost Council & Green
Manitoba.
Hoseinifar, S.H., Ashouri,
G., Marisaldi, L., Candelma,
M., Basili, D., Zimbelli,
A., Notarstefano, V., Salvini,
L., Randazzo, B., Zarantoniello, M., Pessina, A., Sojan, M.J., Vargas, A. & Carnevali,
O. 2024. Reducing the use of antibiotics in European aquaculture with vaccines,
functional feed additives and optimization of the gut microbiota. Journal of
Marine Science and Engineering 12(2): 204.
https://doi.org/10.3390/jmse12020204
Hua, K., Cobcroft,
J.M., Cole, A., Condon, K., Jerry, D.R., Mangott, A.,
Praeger, C., Vucko, M.J., Zeng, C., Zenger, K. & Strugnell, J.M. 2019. The future of aquatic protein:
Implications for protein sources in aquaculture diets. One Earth 1(3):
316-329.
Irungu, F.G., Mutungi,
C.M., Faraj, A.K., Affognon, H., Tanga,
C., Ekesi, S., Nakimbugwe,
D. & Fiaboe, K.K.M. 2018. Minerals content of
extruded fish feeds containing cricket (Acheta domesticus)
and black soldier fly larvae (Hermetia illucens) fractions. International Aquatic Research 10: 101-113.
Jeong, S.M., Khosravi,
S., Kim, K.W., Lee, B.J., Hur, S.W., You, S.G. &
Lee, S.M. 2022. Potential of mealworm, Tenebrio molitor,
meal as a sustainable dietary protein source for juvenile black porgy, Acanthopagrus schlegelii. Aquaculture Reports 22: 100956.
Karthik, M., Bhavan, P.S. & Manjula, T.
2018. Growth promoting potential and colonization ability of probiotics (Bacillus coagulans and Bacillus subtilis) on the
freshwater prawn Macrobrachium rosenbergii post-larvae. Insights in Biology and
Medicine 2: 7-18.
Kewcharoen, W. & Srisapoome,
P. 2019. Probiotic effects of Bacillus spp. from Pacific white shrimp (Litopenaeus vannamei)
on water quality and shrimp growth, immune responses, and resistance to Vibrio
parahaemolyticus (AHPND strains). Fish & Shellfish Immunology 94: 175-189.
Khalid, H.N.M., Jafri, N.A., Kari, Z.A.,
Mat, K., Rusli, N.D., Mahmud, M., Al-Amsyar, S.M., Sukri, S.A.M. &
Harun, H.C. 2023. Effects of different inclusion rates of pre-treated rubber
seed meal (RSM) on physicochemical properties of juvenile Macrobrachium rosenbergii feed. IOP Conference Series: Earth
and Environmental Science 1286: 012036. https://doi.org/10.1088/1755-1315/1286/1/012036
Khanjani, M.H., Torfi Mozanzade, M., Sharifinia, M.
& Emerenciano, M.G.C. 2023. Biofloc:
A sustainable dietary supplement, nutritional value and functional properties. Aquaculture 562: 738-757.
Khosravi, S., Kim, E., Lee, Y.S. & Lee, S.M.
2018. Dietary inclusion of mealworm (Tenebrio molitor)
meal as an alternative protein source in practical diets for juvenile rockfish
(Sebastes schlegeli). Entomological
Research 48(3): 214-221.
Kim, S.Y., Park, J.B., Lee, Y.B., Yoon,
H.J., Lee, K.Y. & Kim, N.J. 2015. Growth characteristics of mealworm Tenebrio molitor. Journal of Sericultural and Entomological Science 53(1): 1-5.
Kolanchinathan, P., Kumari, P.R., Gnanam,
T.S., John, G. & Balasundaram, A. 2017.
Performance evaluation of two probiotic species, on the growth, body
composition and immune expression in Penaeus monodon. Journal
of Fisheries and Aquatic Science 12: 157-167.
Kolanchinathan, P., Kumari, P.R., Raja, K., John, G.
& Balasundaram, A. 2022. Analysis of feed
composition and growth parameters of Penaeus monodon supplemented
with two probiotic species and formulated diet. Aquaculture 549: 737740.
https://doi.org/10.1016/j.aquaculture.2021.737740
Kulkarni, A., Krishnan, S., Anand, D., Kokkattunivarthil Uthaman, S., Otta, S.K., Karunasagar, I. & Kooloth Valappil, R. 2021.
Immune responses and immunoprotection in crustaceans
with special reference to shrimp. Reviews in Aquaculture 13(1): 431-459.
Kumar, V., Sinha, A.K., Romano, N., Allen,
K.M., Bowman, B.A., Thompson, K.R. & Tidwell, J.H. 2018. Metabolism and
nutritive role of cholesterol in the growth, gonadal development, and
reproduction of crustaceans. Reviews in Fisheries Science & Aquaculture 26(2): 254-273.
Lin, W., Luo, H., Wu, J., Hung, T.C., Cao,
B., Liu, X., Yang, J. & Yang, P. 2022. A review of the emerging risks of
acute ammonia nitrogen toxicity to aquatic decapod crustaceans. Water 15(1): 27. https://doi.org/10.3390/w15010027
López-Almonte, O.H., Hernández-Simón,
L.M. & Aguilar-Guggembuhl, J. 2024. Costa Rica’s
potential for entotechnology development: An
ecosystem and entomophagy perspective. Journal of Insects as Food and Feed 11(2): 317-327. https://doi.org/10.1163/23524588-00001238
Mancini, S., Fratini,
F., Turchi, B., Mattioli, S., Dal Bosco, A., Tuccinardi, T., Nozic, S. & Paci, G. 2019. Former foodstuff products in Tenebrio molitor rearing: Effects on growth, chemical
composition, microbiological load, and antioxidant status. Animals 9(8):
484.
Mohideen, A.K. 2022. Crack the Whip on Food
Waste. Consumers’ Association of Penang Press Statement.
https://consumer.org.my/crack-the-whip-on-foodwaste/#:~:text=Malaysians%20dumped%204%2C046%20tonnes%20of,waste%20per%20day%20in%202021
(Accessed 10 October 2023).
Motte, C., Rios, A., Lefebvre, T., Do, H.,
Henry, M. & Jintasataporn, O. 2019. Replacing
fish meal with defatted insect meal (yellow mealworm Tenebrio molitor) improves the growth and immunity of pacific Pacific white shrimp (Litopenaeus vannamei). Animals 9(5): 258.
Murawska, D., Daszkiewicz,
T., Sobotka, W., Gesek, M., Witkowska,
D., Matusevičius, P. & Bakuła,
T. 2021. Partial and total replacement of soybean meal with full-fat black
soldier fly (Hermetia illucens L.) larvae meal in broiler chicken diets: Impact on growth performance, carcass
quality and meat quality. Animals 11(9): 2715.
https://doi.org/10.3390/ani11092715
Nathanailides, C., Kolygas,
M., Choremi, K., Mavraganis,
T., Gouva, E., Vidalis, K.
& Athanassopoulou, F. 2021. Probiotics have the potential
to significantly mitigate the environmental impact of freshwater fish farms. Fishes 6(4): 76. https://doi.org/10.3390/fishes6040076
Ng, W.K., Lim, C.L., Romano, N. & Kua, B.C. 2017. Dietary short-chain organic acids enhanced
resistance to bacterial infection and hepatopancreatic structural integrity of
the giant freshwater prawn, Macrobrachium rosenbergii. International Aquatic Research 9:
293-302.
Nimrat, S., Suksawat,
S., Boonthai, T. & Vuthiphandchai,
V. 2012. Potential Bacillus probiotics enhance bacterial numbers, water
quality and growth during early development of white shrimp (Litopenaeus vannamei). Veterinary Microbiology 159(3-4): 443-450.
Nunes, A.J., Sá, M.V., Browdy,
C.L. & Vazquez-Anon, M. 2014. Practical supplementation of shrimp and fish
feeds with crystalline amino acids. Aquaculture 431: 20-27.
Oonincx, D.G., Laurent, S., Veenenbos,
M.E. & van Loon, J.J. 2020. Dietary enrichment of edible insects with omega
3 fatty acids. Insect Science 27(3): 500-509.
Oonincx, D.G., van Broekhoven,
S., van Huis, A. & van Loon, J.J. 2015. Feed conversion, survival and
development, and composition of four insect species on diets composed of food
by-products. PLoS ONE 10(12): e0144601.
Panini, R.L., Freitas, L.E.L., Guimarães, A.M., Rios, C., da Silva, M.F.O., Vieira, F.N., Fracalossi, D.M., Samuels, R.I., Prudêncio,
E.S., Silva, C.P. & Amboni, R.D. 2017. Potential
use of mealworms as an alternative protein source for Pacific white shrimp:
Digestibility and performance. Aquaculture 473: 115-120.
Paris, N., Fortin, A., Hotte,
N., Zadeh, A.R., Jain, S. & Hénault-Ethier, L.
2024. Developing an environmental assessment framework for an insect farm
operating in circular economy: The case study of a Montréal (Canada) mealworm
farm. Journal of Cleaner Production 460: 142450.
https://doi.org/10.1016/j.jclepro.2024.142450
Parolini, M., Ganzaroli,
A. & Bacenetti, J. 2020. Earthworm as an
alternative protein source in poultry and fish farming: Current applications
and future perspectives. Science of the Total Environment 734:
139460.
Patel, S. 2019. Insects as a source of
sustainable proteins. Proteins: Sustainable Source, Processing and
Applications 1(2): 41-61.
Paul, P. & Rahman, M.A. 2016. Growth
performance of fresh water prawn Macrobrachium rosenbergii under different supplemental feeding
options. International Journal of Fisheries and Aquatic Studies 4(2): 203-207.
Pillai, B.R., Ponzoni,
R.W., Das Mahapatra, K. & Panda, D. 2022. Genetic improvement of giant
freshwater prawn Macrobrachium rosenbergii: A review of global status. Reviews
in Aquaculture 14(3): 1285-1299.
Ramos-Elorduy,
J., González, E.A., Hernández, A.R. & Pino, J.M. 2002. Use of Tenebrio molitor(Coleoptera: Tenebrionidae)
to recycle organic wastes and as feed for broiler chickens. Journal of
Economic Entomology 95(1): 214-220.
Rana, K.J., Siriwardena,
S. & Hasan, M.R. 2009. Impact of Rising Feed Ingredient Prices on
Aquafeeds and Aquaculture Production [pdf] Sterling: Food and Agriculture
Organization of the United Nations (FAO). https://www.cabdirect.org/cabdirect/abstract/20103269836
(Accessed 2 April 2023).
Romano, N. & Zeng, C. 2013. Toxic
effects of ammonia, nitrite, and nitrate to decapod crustaceans: A review on
factors influencing their toxicity, physiological consequences, and coping
mechanisms. Reviews in Fisheries Science 21(1): 1-21.
https://doi.org/10.1080/10641262.2012.753404
Rumbos, C.I., Karapanagiotidis,
I.T., Mente, E., Psofakis,
P. & Athanassiou, C.G. 2020. Evaluation of
various commodities for the development of the yellow mealworm, Tenebrio molitor. Scientific Reports 10(1): 11224.
Rumpold, B.A. & Schlüter, O.K. 2013. Potential
and challenges of insects as an innovative source for food and feed
production. Innovative Food Science & Emerging Technologies 17:
1-11.
Sabaté, J. & Soret,
S. 2014. Sustainability of plant-based diets: Back to the future. The
American Journal of Clinical Nutrition 100(suppl_1): 476S-482S.
https://doi.org/10.3945/ajcn.113.071522
Sales, J. & Glencross, B. 2011. A
meta‐analysis of the effects of dietary marine oil replacement with
vegetable oils on growth, feed conversion and muscle fatty acid composition of
fish species. Aquaculture Nutrition 17(2): e271-e287.
Sarman, V., Vishal, R., Mahavadiya,
D. & Sapra, D. 2018. Nutritional aspect for
freshwater prawn (Macrobrachium rosenbergii) farming. International Journal of Fauna
and Biological Studies 5(2): 172-175.
Seenivasan, C., Radhakrishnan, S., Muralisankar, T. & Bhavan, P.S. 2012. Bacillus
subtilis on survival, growth, biochemical constituents and energy utilization
of the freshwater prawn Macrobrachium rosenbergii post larvae. The Egyptian Journal
of Aquatic Research 38(3): 195-203.
Seidel, R.A., Schaefer, R.L. &
Donaldson, T.J. 2007. The role of cheliped autotomy in the territorial behavior of the freshwater prawn Macrobrachium lar. Journal of Crustacean Biology 27(2): 197-201.
Sharifinia, M., Bahmanbeigloo,
Z.A., Keshavarzifard, M., Khanjani,
M.H., Daliri, M., Koochaknejad,
E. & Jasour, M.S. 2023a. The effects of replacing
fishmeal by mealworm (Tenebrio molitor) on
digestive enzymes activity and hepatopancreatic biochemical indices of Litopenaeus vannamei. Annals of Animal Science https://doi.org/10.2478/aoas-2022-0098
Sharifinia, M., Bahmanbeigloo,
Z.A., Keshavarzifard, M., Khanjani,
M.H., Daliri, M., Koochaknejad,
E. & Jasour, M.S. 2023b. Fishmeal replacement by
mealworm (Tenebrio molitor) in diet of farmed
Pacific white shrimp (Litopenaeus vannamei): Effects on growth performance, serum
biochemistry, and immune response. Aquatic Living Resources https://doi.org/10.1051/alr/2023013
Siemianowska, E., Kosewska,
A., Aljewicz, M., Skibniewska,
K., Polak-Juszczak, L., Jarocki,
A. & Jędras, M. 2013. Larvae of mealworm (Tenebrio molitor L.) as European novel food. Agricultural
Sciences 4(6): 287-291.
Teoh, C.Y. & Loo, E.V. 2022. Potential
of Safmannan as a feed additive for juvenile African
catfish (Clarias gariepinus):
Growth, feed utilization efficiency, serum lysozyme activity, and total viable
bacterial count in the gut. Journal of Applied Aquaculture 35(4):
865-877. https://doi.org/10.1080/10454438.2022.2034702
Teoh, C.Y. & Ng, W.K. 2016. The
implications of substituting dietary fish oil with vegetable oils on the growth
performance, fillet fatty acid profile and modulation of the fatty acid elongase, desaturase and oxidation activities of red hybrid
tilapia, Oreochromis sp. Aquaculture 465: 311-322.
Turchini, G.M., Torstensen,
B.E. & Ng, W.K. 2009. Fish oil replacement in finfish nutrition. Reviews
in Aquaculture 1(1): 10-57. https://doi:10.1111/j.1753-5131.2008.01000.x
Tocher, D.R. & Glencross, B.D. 2015. Lipids
and fatty acids. In Dietary Nutrients, Additives, and Fish Health,
edited by Lee, C.S., Lim, C., Gatlin III, D.M. & Webster,
C.D. Hoboken, NJ: John Wiley & Sons. pp. 47-94.
Toledo, A., Frizzo,
L., Signorini, M., Bossier, P. & Arenal, A. 2019.
Impact of probiotics on growth performance and shrimp survival: A
meta-analysis. Aquaculture 500: 196-205.
van Huis, A. 2013. Potential of insects as
food and feed in assuring food security. Annual Review of Entomology 58:
563-583.
van Huis, A. & Oonincx,
D.G. 2017. The environmental sustainability of insects as food and feed. A
review. Agronomy for Sustainable Development 37: 43.
Xie, S., Liu, Y., Tian, L., Niu, J. & Tan, B. 2020. Low dietary fish meal induced
endoplasmic reticulum stress and impaired phospholipids metabolism in juvenile
pacific white shrimp, Litopenaeus vannamei. Frontiers in Physiology 11:
1024. https://doi: 10.3389/fphys.2020.01024
Zokaeifar, H., Luis Balcázar,
J., Kamarudin, M.S., Sijam,
K., Arshad, A. & Saad, C.R. 2012. Selection and identification of
non-pathogenic bacteria isolated from fermented pickles with antagonistic
properties against two shrimp pathogens. The Journal of Antibiotics 65(6):
289-294.
*Pengarang untuk surat-menyurat;
email: cyteoh@utar.edu.my